

A Leading Global Manufacturer of Advanced Analytical Instrumentation

for Laboratory and Online Process Analytics

We are committed to delivering comprehensive global sales and service support with 13 offices and a network of over 140 distributors worldwide.

U.S.A. (Headquarters)

8824 Fallbrook Dr., Houston, Texas 77064 +1.800.444.TEST or +1.281.940.1803 sales.usa@paclp.com service.usa@paclp.com

BOSTON

50 Redfield Street, #204, Boston, MA, 02122 +1.781-393-6500 sales@cambridgeviscosity.com

CANADA

11168 Hammersmith Gate, Richmond, BC V7A 5H8 +1.604.241.9568 admin@phase-technology.com

CHINA

Room 353, Building No.8, 81 Meiyue Road, China (Shanghai) Pilot Free Trade Zone +86.21.2076.5611 sales.china@paclp.com service.china@paclp.com

DUBAI

Dubai Airport Free Zone, Building 2E, Office G02 P.O. Box 54336 Dubai, U.A.E

FRANCE

BP 70285, Verson, 14653, Carpiquet Cedex, France +33.231.264.300 sales.france@paclp.com service.france@paclp.com

GERMANY

i_Park Tauberfranken 7, 97922, Lauda-Königshofen +49.9343.6400 sales.germany@paclp.com service.germany@paclp.com

INDIA

509 Powai Plaza, Hiranandani Gardens, Central Ave. Powai, Mumbai, 400076 +91 22 2570 3636 sales.southasia@paclp.com service.southasia@paclp.com

NETHERLANDS

Kiotoweg 555, 3047 BG Rotterdam +31.10.462.4811 sales.netherlands@paclp.com service.netherlands@paclp.com

SINGAPORE

1 Paya Lebar Link, Paya Lebar Quarter #04-01, Singapore 408533 +65.6412.0890 sales.singapore@paclp.com service.singapore@paclp.com

SOUTH KOREA

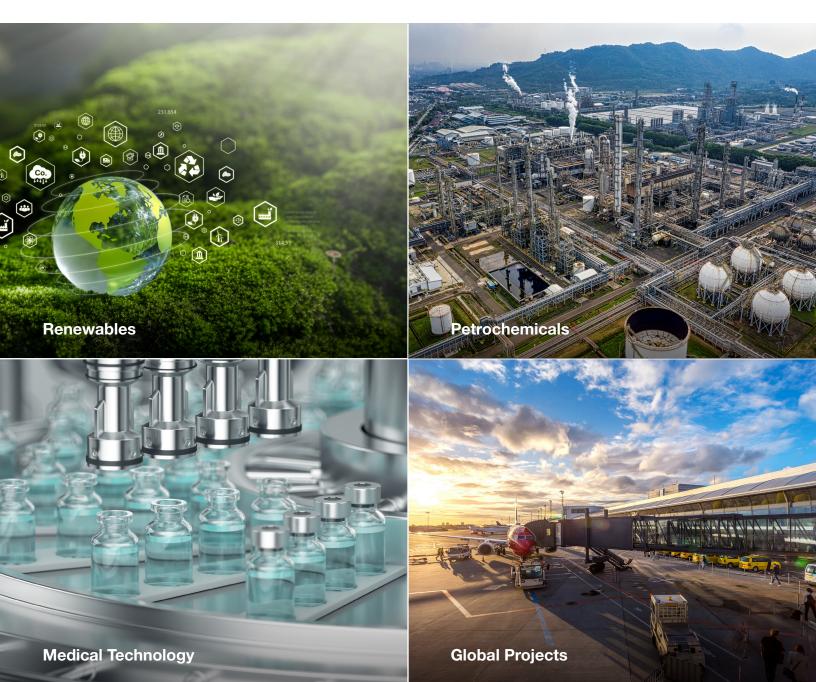
901-943, Glolyoffice, Daseung Plaza Building, 125 Gilju-ro, Wonmi-gu, Bucheon-si, 14542 Gyeonggi-do +82.2785.3900 sales.southkorea@paclp.com service.southkorea@paclp.com

UNITED KINGDOM

8 Meadowbank Road, Carrickfergus Co. Antrim BT38 8YF, Belfast, Ireland +44.0.28.93.32.89.22 sales@advancedsensors.co.uk

BATH

Unit 6 The Industrial Quarter Bath Business Park Bath BA2 8SF, United Kingdom info@iconscientific.com



Company Overview

PAC empowers global customers across various industry sectors, enhancing their efficiency through innovative solutions by designing, manufacturing, and marketing advanced lab and online analytical instruments, along with a digital platform for real-time analytics.

With decades of knowledge and expertise, our instruments consistently deliver unmatched performance and value, backed by comprehensive global support consisting of 13 sales and support offices and a network of over 140 distributors, contributing to the safe and sustainable advancement of industries worldwide.

PAC complies with ISO 9001 and ISO 17025 standards, which guarantees the quality of our products and reaffirms our commitment to quality, precision, and customer support. PAC operates as a unit of Indicor, a diversified technology company and a constituent of S&P 500, Fortune 1000, and Russel 1000 indices.

Our Brands

PAC has combined the world's most respected and long-established brands of analytical and testing equipment. Each of our brands have long histories of developing best-in-class analytical instrumentation for lab and process applications. In fact, the dynamic synergy of the PAC team and its unique technologies has led to the development of unique, cutting-edge instruments.

PAC offers a full range of instruments for distillation, sulfur/nitrogen, viscosity, flash point, cold flow, and oil-inwater analyses by recognized PAC brands: AC, Advanced Sensors, Alcor, Antek, Cambridge Viscosity, Herzog, ICON, ISL, Phase Technology, and Uson. These brands have long histories of providing innovative, highly dependable, and exceptionally accurate instrumentation.

In close cooperation with various standards organizations throughout the world, PAC introduces innovative instruments and applications which adhere to various standards by ASTM, CEN, DIN, GPA, IP, ISO, and UOP.

The most and long-established brands of analytical solutions in one single organization

Services, Support and Training

At PAC, we're dedicated to providing comprehensive service and support to our customers. From preventive maintenance, calibration, repairs, and even relocation services, we cover all bases to ensure maximum quality and compliance with standards and regulations.

Additionally, in-depth training is offered either at PAC and channel partner facilities worldwide or directly at the customer's facility to help maximize performance and minimize downtime. Our training programs offer both theoretical knowledge and practical skills for PAC systems, focusing on troubleshooting, maintenance, calibration, and more.

In alignment with our commitment to quality, all work is performed by skilled certified service technicians. Additionally, our Service Repair Centers around the world are ISO-9001 and 17025 accredited. Our facility in Verson, France, is ISO 14001 certified, meeting the internationally recognized standard for environmental management systems.

Certified Reference Materials

PAC offers a broad range of Certified Reference Materials (CRM), calibration standards, and reference samples to support your testing needs. By routinely verifying your instrument's performance, you can ensure consistent quality that meets expected performance demands. This will help you establish good inter-laboratory correlation, and generate reliable test data.

Benefits:

- Ensures dependable performance of your equipment
- Isolates testing bias before it impacts product quality
- Certified values determined through International round robin testing by a minimum of 12 labs
- Meets traceability requirements for ISO/NAMAS accreditation

PAC digitizes our institutional knowledge and makes it available to our customers

As a trusted solution provider with a global footprint, PAC introduces a new and unique tool for PAC instruments which are compatible with PACe. PACe facilitates a smooth transition of instruments into an integrated digital solution, empowering your organization with enhanced insights and operational efficiencies.

Benefits of PACe include:

- Reduce downtime by optimizing your instruments
- Optimize operational workflow
- Save significant cost with full visibility
- See all results and insights in one place

PACe is designed to assist the laboratory, multiple sites, and organizations as a whole to manage assets by calculating costs, forecasting capacity, and optimizing workflows seamlessly.

Empower your lab to attain greater efficiency and profitability by leveraging the power of PACe to make informed decisions that can enhance productivity and overall throughput. It's time to eliminate guesswork and embrace data-driven insights to move your operations forward.

Asset Management

Around the clock status monitoring to reach the desired annual throughput and to identify hidden instrument capacities.

Instrument Insights

Real-time alerts from every instrument connected to PACe, to a desktop, tablet, or mobile device. This will allow you to see optimization opportunities in throughput and instrument irregularities for real-time decision making, without having to manually visit each instrument.

Proactive Maintenance

Instrument maintenance is vital and with PACe, you'll be able to diagnose, predict, and help prevent errors, with automated and real-time condition monitoring using the instrument's history to more accurately predict when maintenance will be required.

Iris Software

IRIS is PAC's innovative laboratory results management and reporting software. IRIS seamlessly connects all your lab instruments—whether they're in the next room or across the globe—allowing you to manage them all from one centralized system.

Why Choose IRIS?

- Streamline Operations: Say goodbye to juggling multiple software platforms. With IRIS, everything is in one place, reducing the need for extensive training and saving valuable time.
- Enhance Productivity: Need to reprocess data? IRIS lets you reprocess without rerunning samples, speeding up your workflow.
- Stay Compliant: IRIS meets security and quality protocols, ensuring your lab's operations are always in line with industry standards.
- Elevate your lab's performance with IRIS—where efficiency, productivity, and compliance come together.

Gas Chromatography Solutions

Hi-Speed Refinery Gas Analyzer

Reformulyzer M4®

Category										
			Fu	III Composition	Analysis					
Model	NGA	HiSpeed RGA FastRGA LPG	DHA Analyzers		Reformulyzer® M4	Reformulyzer® M4 Prefrac	GCxGC-FID	MDA Analyzer (HPLC)	Productivity C	enter
		LFG	Regular	DHA Front End				(HFLO)	AC8612 [™] Analyzer	AC8634™ Analyzer
Method	GPA 2261 Extended NGA: ISO 6975, ISO 6976, GPA 2172, GPA 2286, GOST D3588, EN 7941, IP 40 EN 15984, UOP 539, GOST 3137	D2163, D2598, D3588, EN ISO 7941, IP 405, EN 15984,	AC Fast DHA D6729, D6730, D5134, D6733. GOST R 52714, GOST 54275	D7900, EN 15199-4, IP 601,	ISO 22854, D6839, D5443, IP 566, SH/T 0741, GB/T 28768- 2012, GOST R EN ISO 22854	EN ISO 22854, ASTM D6839, ASTM D5443, IP566, SH/T 0741, GB/T 28768-2012	D8396	D6591, EN 12916, IP 391, GOST R EN 12916, D6379, IP548, IP436	Reports D86 correlation for groups 0,1, and 2 GOST 2177	D86 correlation for groups 3 and 4 , D2887, EN ISO 3924, IP 406, GOST 2177
			(Regular + Front-							
	NGA: C1-C6, C6+ hydro carbons, Hydrogen sulfide Extended NGA: C1-C14, C14+ hydrocarbons, Non- condensable gases: nitrogen, carbon dioxide and oxygen, hydrogen sulfide	Non- condensable Gases, C1-C5, C5+ hydro carbons	C1 - nC14 ethanol, Butanol, MTBE/ETBE/ TAME, methanol, t-Butanol	Light Hydrocarbons in Crude	Hydrocarbon Group Types and Oxygenates	Hydrocarbon Group Types and Oxygenates	Paraffins, Naphtenes, Aromatics, FAMEs	Mono-, Di-, and Poly-ring aromatics	Simulated Distillation, Atmospheric Distillation, Gasoline	Simulated Distillation, Atmospheric Distillation
Refinery Gas		⊘								
Natural Gas	⊘									
Biogas	⊘									
LPG		⊘								
Gas in Petrochemical		•								
Straight Run/ Naphtha Depentanized			⊘	⊘	⊘				⊘	
Bottom			⊘	⊘	⊘				⊘	
Reformate			⊘	⊘	⊘				⊘	
FCC-Light			⊘	Ø	Ø				Ø	
FCC-Middle					⊘					
FCC-Heavy					Ø					
Visbreaker			Ø	Ø	Ø				⊘	
Alkylate			⊘	Ø	⊘				⊘	
Isomerate			Ø	⊘	Ø				⊘	
Gasoline Blend			⊘	⊘	⊘				⊘	
Gasoline with Oxygenates			⊘	⊘	⊘				⊘	
Jet Fuel							⊘	Ø		⊘
Diesel							⊘	⊘		⊘
Micro Activity Testing						⊘				
Lubricant (stock base) with and without Oxygenates										
Thermal Crack Feed										
Crude Oil				Ø						
Residue										
Biofuels							⊘	Ø		

All-in-BioDiesel

Boiling Po	Boiling Point Distribution			Trace Analysis			Other Single Component / Group Analysis				
SIMDIS Analyze	ers High Range	Crude	CNS SIMDIS Medium / High	SULFUR	Oxytracer™	Fame in Aviation Turbine Fuel	Impurity Analyzers	Fast Total Olefins (FTO)	Oxygenates Analyzers	Aromatics Analyzers	All-in-One Biodiesel
Range			Range			(AVTUR) Analyzer	Analyze				
D7096, D2887, D6417 (Mov), D5442 (wax), IP 406, ISO 3924, DIN 51435, D7213	D6352, D7500, IP 545 (Crude Oils) IP 480, IP 507, DIN 51581-2 (MOV), EN 15199-1, EN 15199-2	D7169, D7900 EN 15199-3 EN 15199-4	Complies to: D7807 Comparable to: D2887, D7096, ISO3924, IP406 D6352, D7500, D7213, D7398 D7169, EN15199-3, IP545	D5504, D5623, D7011, D5303, ISO19739, UOP791	D7423 D7754 AC Oxtyracer proprietary Method	IP 599	UOP 603, D2504, D2505, D2712	D6296	D4815, EN 13132, GOST R EN 13132	D3606, D5580 EN 12177, UOP 744	EN 14103, EN 14105, EN 14106 EN 14110, EN 15779 D6584
Simulated Distillation, Atmospheric Distillation, Gasoline, etrochemical Analysis	Simulated Distillation, Atmospheric Distillation, Gasoline, Petrochemical Analysis	Simulated Distillation, Atmospheric Distillation, Crude	Simultaneous Simulated Distillation for Carbon, Nitrogen and Sulfur for crude and crude products. IBP > 151°C (304°F) FBP <700°C (11292°F)	Trace sulfur in Naphta, Gasoline, Jet, Diesel and light Hydrocarbon streams	Trace levels for up to 24 Selected oxygenates in Naphta, Gasoline and light Hydrocarbon streams	Aviation Tubine Fuel (AVTUR), Analysis Range C14:0, C16:0, C18:0, C18:1, C18:2, C18:3	Impurities in Monomers	Olefins, Gasoline	Oxygenates and alcohols in gasoline, including: MTBE, ETBE, TAME, DIPE, C1-C4 alcohols % levels	Aromatic content in gasoline by determining: Benzene, Toluene, Ethylbenzene, Xylenes, C9 (and heavier) aromatics % levels	FAME Analysis of BioDiesel
				⊘	⊘		⊘				
				Ø			⊘				
				⊘	⊘		⊘				
				⊘			⊘				
				⊘	⊘		⊘				
Ø	Ø		⊘	⊘	⊘						
Ø	⊘		Ø	Ø	Ø						
Ø	⊘		Ø	Ø	⊘						
⊘	⊘		⊘	⊘	⊘			⊘			
⊘	⊘		⊘	⊘	⊘			⊘			
○	⊘		O	Ø	Ø			Ø			
			Ø	Ø	Ø						
			Ø	Ø	⊘						
⊘	Ø		⊘	Ø	⊘			⊘	⊘	⊘	
Ø	Ø		⊘	Ø	Ø			Ø	Ø	⊘	
⊘	⊘		⊘	Ø		⊘					⊘
⊘	Ø		⊘	Ø							
		Ø	Ø								
		⊘	⊘								
		⊘	⊘								
		Ø									
											⊘
1											9

Physical Properties Solutions

Cold Behavior

Model	OptiCPP	OptiFPP	OptiMPP	70Xi series	ISL OptiFZP	WAT-70Xi
Description	Cloud & Pour Point	Cold Filter Plugging Point	Cloud & Pour Point (mini method)	Cloud, Pour & Freezing Point	Freezing Point	Wax Appearance Temperature
Standard Methods	ASTM D2500, D5771, D5853, D5950, D97, IP 15, IP 219, IP 444, ISO 3015, ISO 3016, JIS K2269	EN 16329, EN 116, D6371, IP 309, JIS K2288, GOST 22254, SH/T 0248	ASTM D7346, D7689 Equivalent to: ASTM D97, D2500, ISO 3015, ISO 3016, JIS K2269	ASTM D5773, D5949, D5972 Equivalent to: ASTM D97, D2500, D2386, IP 15, IP 219, IP 16	ASTM D7153, D2386, IP 16, IP 529, ISO 3013, JIS K2276,	ASTM D8420 Equivalent to: ASTM D5773 (IP446), ASTM D2500 (IP 219 / ISO 3015)

Flash Point

Distillation

Model	OptiFlash Pensky Martens	OptiFlash TAG	OptiFlash ABEL	OptiFlash Small Scale	OptiFlash CoC	OptiDist	OptiPMD	HDV 632
Description	Pensky Martens Flash Point	TAG Closed Cup Flash Point	ABEL Closed Cup Flash Point	Small Scale Flash Point	Cleveland Open Cup Flash Point	Atmospheric Pressure Distillation	Atmospheric Micro-distillation	Vacuum Distillation
Standard Methods	ASTM D93, EN ISO 2719, IP 34, ISO 2719, JIS K2265, GB/T 261, GOST R EN ISO 2719	ASTM D56, DEF STAN 91-091	EN ISO 13736, IP 170, DEF STAN 91-091	ASTM: D3828, D3278, D7236 ISO: 3679, 3680 IP:523, 524, 534	ASTM D92, ISO 2592, GOST 4333	ASTM: D86, D1078, D850, IP 123, IP 195, ISO 3405, EN 3405, GOST 2177, GB/T6536, DEF STAN 91-091	ASTM D7345 and IP 596. Correlation to ASTM D86, ASTM D1160 (B100), ISO 3405, IP 123	ASTM D1160, GOST 11011

Viscosity

Model	OptiMVD	JFA 70Xi - DFA 70Xi	ViscoLab 3000	ViscoLab 4000	ViscoLab PVT+	HVM 472	VH1, VH2
Description	Constant Pressure Viscometer and Density Meter	Jet Fuel & Diesel Viscosity and Density	Temperature Controlled Viscometer	Small Sample Viscometer	High Pressure Viscometer	Multirange Viscometer	Houillon Viscometer
Standard Methods	ASTM: D7945, D7777 Equivalent to: ASTM D445 (IP 71/ISO 3104)	ASTM D7945, D7777 Equivalent to: ASTM D445 (IP 71/ISO 3104)	ASTM: D7483, D445	ASTM: D7483, D445	ASTM: D7483, D445	ASTM: D445, D446, IP 71, ISO 3104, EN ISO 3104, ISO 3105, GOST 33, GB/T 265	ASTM D7279

Fuel Analysis

Model	ртот	JFTOT IV	OptiReader	JFA-70Xi	OptiFuel	DFA-70Xi
Description	Diesel Thermal Oxidation	Jet Fuel Thermal Oxidation	Ellipsometric heater tube scanner	Jet Fuel Freezing Point, Viscosity & Density	Gasoline, Diesel & Jet Fuel FTIR	Diesel Cloud & Pour Point, Viscosity & Density
Standard Methods		ASTM D3241, IP 323, ISO 6249, DEF STAN 91-091	ASTM D3241 Annex 4 ASTM D1655, ASTM D7566	ASTM D5972 (IP 435), ASTM D7945, D7777 Equivalent to: ASTM D2386 (IP 16/ISO 3013), ASTM D445 (IP 71/ISO 3104)	ASTM: D6277,D7371, D5845, D7777, ISO 15212 Correlates to: ASTM D2699, D2700, D5191, D86, D6839, D613, D4737A, EN/ISO 5164, 5163, 13013/1, 3405, 22854, 5165, 4264, Method Applications: D975, 4814, EN 228, 590	ASTM D5773 (IP 446), D5949, D7945, D7777 Equivalent to: ASTM D2500 (IP 219/ISO 3015, ASTM D4052 (IP 365/ISO 12185) @ 15 °C, ASTM ASTM D97 (IP 15/ISO 3016), ASTM D445 (IP 71/ISO 3104)

Specialized Solutions

Model	Cetane ID 510	MCRT 160	NCK 2 5G	HVP 972	RB36 5G
Description	Derived Cetane Number	Micro Carbon Residue	Noack Evaporation Loss	Vapor Pressure	Ring and Ball
Standard Methods	ASTM D7668, EN 16715, IP 615, GOST R 58440 Equivalent to: ASTM D613, ISO 5165, IP 41, IP 615, EN 16715 Diesel specs: ASTM D975, D6751, D7467, EN 590, GOST R 52368	ASTM D189, D4530, DIN 51551, GB/T 17144, IP 398, ISO 10370, ISO 6615, JIS K2270; GB/T 17144	ASTM D5800, CEC L 40 A 93, IP 421	ASTM D5191, D6378, EN 13016, IP 394	ASTM D36, E28, EN 1427, IP 58, ISO 4625

Elemental Analysis

Model	ElemeNtS (Vertical)	ElemeNtS (Vertical)	ElemeNtS (Vertical)	ElemeNtS (Horizontal)	ElemeNtS (Horizontal)	ElemeNtS (Horizontal)
Detection	Nitrogen	Sulfur	Nitrogen + Sulfur	Nitrogen	Sulfur	Nitrogen + Sulfur
Measurement Principle	Chemiluminescence	Ultra-Violet Fluorescence	Combination of Chemiluminescence and Ultra-Violet Fluorescence	Chemiluminescence	Ultra-Violet Fluorescence	Combination of Chemiluminescence and Ultra-Violet Fluorescence
Standard Methods	ASTM: D4629, D5176, D7184, DIN 51444, SO/TR 11905, GB/T 17674, UOP 936, UOP 981, UOP 971, EN 12260, SH/T 0657, GB/T 17674, SH/T 0657	ASTM: D5453, D6667, D7183, D7551, EN 17178, EN-ISO 20846, EN 15486, ISO 20729, JIS K 2541, IP 554, IP 490, UOP 989, GOST R 56866, GOST R 56342, UOP 987 Part A, SH/T 0689	See Nitrogen + Sulfur	ASTM: D4629, D5176, D7184, DIN 51444, SO/TR 11905, GB/T 17674, UOP 936, UOP 981, UOP 971, EN 12260, SH/T 0657, GB/T 17674, SH/T 0657, D5762, ASTM D5762	ASTM: D5453, D6667, D7183, D7551, EN 17178, EN-ISO 20846, EN 15486, ISO 20729, JIS K 2541, IP 554, IP 490, UOP 989, GOST R 56866, GOST R 56342, UOP 987 Part A, SH/T 0689	See Nitrogen + Sulfur + ASTM D5762

Our instruments can be customized to your specific needs. Due to continuing product development, specifications are subject to change at any time without notice.

Leak Testing Solutions

Leak and flow testing solutions for Research Managers, Production Managers and System Integrators to help you achieve your testing requirements at every stage of the product manufacturing process

Leak Testing

Model	628	Sprint iQ	Sprint mD
Description	Simplistic and Reliable Leak Instrument	Compact Multi-Channel Leak & Flow Instrument	Sprint Next-Gen Multi-Channel Leak & Flow Instrument
Pressure Range	950 mbar/-95 kPa/-14psig 1 bar/100 kPa/15 psig 4 bar/400 kPa/60 psig 10 bar/1000 kPa/150 psig 15 bar/1500 kPa/225 psig	Up to 500psi	Standard Vacuum up to 150 psi (1.035 kPa) High Pressure up to 750 psi (5.170 kPa)
Flow Range	N/A	Up to 20 L/min	Up to 20 L/min
Channel Configuration	Up to 1 Synchronous Channel	Up to 4 Synchronous or Independent Channels	Up to 4 Synchronous or Independent Channels
Test Method	Differential Pressure Decay Differential Vacuum Decay Exercise/Fluff Vacuum Decay	Back Pressure Flow Burst (Pressure) Continuous Flow Crack (Upstream/Downstream) Exercise/Fluff Flow Mass Flow Test Occlusion (Blockage) Pressure Decay Seal Creep Sealed Component Vacuum Burst	Back Pressure Flow Burst (Pressure) Crack (Upstream/Downstream) up to 150 psi Exercise/Fluff Flow up to 150 psi Mass Flow Test up to 150 psi Occlusion (Blockage) Pressure Decay Seal Creep Sealed Component Vacuum Burst

Model	Vector	Optima vT	Qualitek mR
Description	Flexible and Durable Leak & Flow Instrument	High Versatility Leak & Flow Instrument	Multi-Range Leak & Flow Instrument
Pressure Range	Vacuum to 1,500 psi	Vacuum up to 1,500 psi	Standard Vacuum up to 150 psi (1.035 kPa) High Pressure up to 750 psi (5.170 kPa)
Flow Range	Up to 1000 L/min	Up to 500 L/min	Up to 225 psi/15 bar differential Up to 500 psi/35 bar gauge
Channel Configuration	Up to 10 Synchronous, Independent, or Coordinated Channels	Up to 2 Synchronous, Independent, or Coordinated Channels	Up to 1 Synchronous Channel
Test Method	Burst (Pressure) Continuous Flow Crack (Upstream/Downstream) Differential Mass Flow Differential Vacuum Decay Exercise/Fluff Flow Laminar Flow Mass Flow Test Occlusion (Blockage) Pressure Decay	Back Pressure Flow Burst (Pressure) Continuous Flow Crack (Upstream/Downstream) Differential Mass Flow Exercise/Fluff Flow Mass Flow Test Occlusion (Blockage) Pressure Decay Seal Creep Sealed Component	Back Pressure Flow Differential Mass Flow Differential Pressure Decay Differential Vacuum Decay Exercise/Fluff Flow Force Decay Mass Flow Test Occlusion (Blockage) Pressure Decay Pressure Decay Pressure Rise Sealed Component

Improve Production Through Real-time Process Optimization and Control

As a leading producer of innovative and reliable process solutions for a wide range of industries, PAC's Process Solutions demonstrates a commitment to excellence by delivering cutting-edge products. We are dedicated to helping businesses optimize their processes, improve product quality, decrease test cycle times, and drive operational efficiency.

PAC Process products are designed for a range of applications, including:

Oil Production and Produced Water Separation: Oil-in-water and water-in-oil solutions aid in the production and management of produced water and oil. With our brand Advanced Sensors being the No 1 player in the upstream for oil in water measurement.

Gasoline and diesel blending: Our complete ecosystem of measurements includes the unique Ethanol Blend Optimizer, enabling customers to save millions of dollars in giveaway.

Petrochemical and SAF/jet fuel applications: We offer solutions for a range of applications, from measuring distillation and cold properties for sustainable aviation fuel (SAF) and jet fuel to protecting catalysts in petrochemical processes by monitoring nitrogen and sulfur levels. We also provide tools for measuring vapor pressure and distillation at terminals.

With many more applications available, PAC offers numerous opportunities to improve your processes and benefit from our wide range of products and technologies, ultimately helping you save money and protect the environment.

PAC Technology that is integrated from Process to Lab, building confidence in what you do

PAC's integrated measurement and testing capabilities provide the data you need to balance supply and demand, optimizing your run rates and keeping your processes operating at peak efficiency. We offer solutions for distillation, flash point, viscosity, cold behavior, sulfur and nitrogen analysis, oil-in-water / water-in-oil measurement, vapor pressure, hydrogen, and color opacity. Many of these technologies are also found in our lab versions, making it easier to correlate back to the lab with confidence.

Process Analyzer Solutions

Total Nitrogen & Sulfur

Cloud

and ASTM D5771/2/3

Model	NSure
Standard Methods	Sulfur: ASTM D5453, D6667, ISO 20846 Nitrogen: ASTM D4629, ASTM D5176, DIN 38409, TEIL 27, EN 12225

Vapor Pressure Analysis

Model	Icon Vapour Pressure Analyser
Standard Methods	ASTM D5191, D6378, D6378, D6377, Correlates to D323, D4953, D5190, D5188, D5482

Cold Filter

ASTM 6371

Measure with Ethanol in your gasoline blend

Model	lcon Ethanol Blend Optimizer
Standard Methods	Removes the guess work from predicting what the impact of ethanol has on BOB

Freeze

Plugging Point Point Point Point Icon Cloud Point Analyser Icon CFPP Analyser Icon Freeze Point Analyser **Icon Pour Point** Model **Analyser** ASTM D2500 ASTM D97, D5853, ASTM D2386, D5972 Standard

Viscosity

Methods

Model	ViscoPro 2100	Icon Viscosity Analyser
Standard Methods	ASTM D445, D7483	ASTM D445, D2270

Atmospheric Atmospheric Micro-Distillation Pressure Distillation

Pour

D5949 and D5985

and D7153

MicroDist	Icon Distillation Analyser	
ASTM D86, ASTM D7345, IP 123	ASTM D86, IP 123, ISO 3405	

Flash Point

Model	Icon Flash Point Analyser
Standard Methods	ASTM D56, D92, D93, IP170

Cetane Index Analysis

Cetane Number Analysis

MicroDist	With Icon Distillation	Icon Cetane Number Analyser
ASTM D4737	D4737	Correlates to
and D976	and D976	ASTM D7668

Color Opacity Analysis

Model	Icon Color Opacity Analyzer
Standard Methods	ASTM D1500, D156, D1209

Hazardous Area Oil-in-Water

Ordinary Area
Oil-in-Water

Hazardous Area Oil & Solids-in-Water

EX-400,100M,1000M Side-Stream Microscopy with or with Flourescence

Hazardous Area Water Cut

WIO-300S

Model X-One

EX-100/1000 Side-Stream LIP

S-One

#PAC

ABOUT PAC

PAC is a leading global solution provider of advanced analytical instruments for laboratories and online process applications. Our solutions are from industry-leading brands: AC Analytical Controls, Advanced Sensors, Alcor, Antek, Cambridge Viscosity, Herzog, Icon Scientific, ISL, Phase Technology, and Uson.

We are committed to delivering quality and superior local customer service worldwide. With 13 office locations and a network of over 140 distributors, PAC operates as a unit of Indicor, LLC, a diversified technology company that is a constituent of the S&P 500, Fortune 1000, and Russell 1000 indices.

HEADQUARTERS

PAC LP | 8824 Fallbrook Drive | Houston, Texas 77064 | USA T: +1 800.444.8378 | F: +1 281.580.0719

Contact us for more details. Visit our website to find the PAC representative closest to you.

