SELECTIVE ANALYSIS OF TRACE LEVEL CARBONYL SULPHIDE IN PROPYLENE BY GAS CHROMATOGRAPHY AND CHEMILUMINESCENCE AS ALTERNATIVE DETECTION FOR ASTM D5303

MARIJN VAN HARMELEN
Introduction

TRACE LEVEL CARBONYL SULFIDE IN PROPYLENE BY GAS CHROMATOGRAPHY AND
INTRODUCTION

• Introduction
• Standardization
• Analytical Challenge
• SCD VS PFPD/FPD
• Recent development
• Application COS in Propylene
INTRODUCTION
COS IN PROPYLENE

• Catalyst Poisoning / degenerate

• Product Quality / conversion
Sulfur Speciation

STANDARDIZATION
<table>
<thead>
<tr>
<th>Method</th>
<th>Detection</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASTM D5303</td>
<td>Flame Photometric Detection (PFPD)</td>
</tr>
</tbody>
</table>

- Limited in scope
 - 0.5 - 4 mg/Kg
COS in Propylene

ANALYTICAL CHALLENGE
ANALYTICAL CHALLENGE

- COS in Propylene (Boiling point column)
- CO-ELUTION of COS in Propylene
- Selectivity
- Detection Limit
COS IN Propylene

SCD VS PFPD/FPD
DETECTOR CHARACTERISTICS

SULFUR DETECTOR COMPARISON

<table>
<thead>
<tr>
<th></th>
<th>SCD</th>
<th>PFPD</th>
<th>FPD+</th>
</tr>
</thead>
<tbody>
<tr>
<td>Response Stability</td>
<td>≤2% RSD 2 hrs ≤3% RSD 24 hrs</td>
<td>≤ 3%</td>
<td>≤ 3%</td>
</tr>
<tr>
<td>Minimum Detectability (pg S/s)</td>
<td>≤ 0.3</td>
<td>≤ 1.0</td>
<td>≤ 2.5</td>
</tr>
<tr>
<td>HC Selectivity (S/C Ratio)</td>
<td>≥ 5.0 e7</td>
<td>≥ 1.0 e6</td>
<td>≥ 1.0 e6</td>
</tr>
<tr>
<td>Linear response</td>
<td>≥ 1.0 e4</td>
<td>1.0 e3 (approximate)</td>
<td>≥ 1.0 e3 (not linear)</td>
</tr>
<tr>
<td>Equimolar Response</td>
<td>≤ 10%</td>
<td>≤ 8%</td>
<td>Non equimolar</td>
</tr>
<tr>
<td>High Column Flow</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Compatible with GC*GC</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Simultaneous Multi-element Response</td>
<td>S&N</td>
<td>Multi</td>
<td>S&P</td>
</tr>
</tbody>
</table>
PRO’s vs. CON’s FPD

Advantages FPD:
- Low Cost
- High flow rates

Disadvantages FPD:
- Non Equimolar
- Non Linear response
- Quenching of hydrocarbons

- Single component
- Low Cost solution
PRO’s vs. CON’s PFPD

Advantages PFPD:

• Long term stability of the PFPD
• Consumes less gas
• Uses Air

Disadvantages PFPD:

• HC Quenching
• Linear range limited

• Stable
• Permeation device recommended
Advantages SCD:

• Larger dynamic range
• Less prone to quenching / hydrocarbon interference
• Best sensitivity

Disadvantages SCD:

• Requires high quality gasses

• No matrix effects
• Single level calibration
Sulfur Speciation

RECENT DEVELOPMENTS
RECENT DEVELOPMENTS
SENSE

- NEW Sulphur Chemiluminescence Detector (SCD)
- Replaces existing Antek 7090

Research focus:
- Stability
- Fast start-up times
• Research
 – Complete redesign of the detector
 – Changed probe design
 – Optimized flow settings
 – Hardware redesign for easy septum / column change
 – Implementation of automated vacuum check procedure
 – Uses air instead of oxygen
• 72 hour response stability check
Sulfur Speciation

COS IN PROPYLENE
Trace Carbonyl Sulfide (COS) in Propylene

- GSV injection
- LDL <30 ppb

Parameter	**Setting**
Column | 60 m x 0,53 mm x 4 µm methylsilicone
Sample size | 1 ml loop
Split | N.A.
Injector | Direct injection
Carrier gas | Helium
Carrier flow | 10 ml/min
SCD gasses | Air / H2
COS IN PROPYLENE
EXAMPLE CHROMATOGRAM

- 100 ppb Mol COS in Propylene Matrix
COS IN PROPYLENE QUENCHING

- Sulfur standard in Propylene
- Propylene Matrix

LDL of <20 ppbM
COS in Propylene

OVERVIEW
Sulfur Chemiluminescence
Best in market for COS in Propylene