CNS SIMDIS: FAST QUANTITATIVE BOILING POINT DISTRIBUTION DATA FOR CARBON, SULPHUR AND NITROGEN FOR CRUDE OIL

Rob de Jong
PAC

Wed Nov 29th, 1.30 - 2.00 pm, Room 3.
OUTLINE

• Crude Value (Why CNS)?
• CNS SIMDIS Solution
• Scope & Performance
• Benefits
• Example data
• Q&A
THE VALUE IN CRUDE
NO CRUDE IS THE SAME...
Differentiator	Δ	**Price effect**
API | +1° | 0.007 US$/$/ Brent
Sulphur | +1% | -0.056 US$/$/ Brent
TAN | +1 unit | -0.051 US$/$/ Brent

Example

1 barrel Crude | +1% Sulphur | Exp price delta -2.8 US$
Brent price level = | (All other parameters identical) | → 47.2 US$ (-5.6%)
50 US$/barrel

Crude intake value makes a significant impact on Refining Margins!
To know that value fast, allows for making that difference in Profit!

Crude Oil Price Differentials and Differences in Oil Qualities: A Statistical Analysis.
ESMAP Technical paper October 2005
THE VALUE IN CRUDE
DISTILLATION OPTIMIZATION

- Cut points driven by Boiling Point
- Specs driven by Sulfur/Nitrogen Content
THE VALUE IN CRUDE
LOOK-ALIKES AND BLENDS

REFINERS MUST KNOW IMPORTANT CRITERIA

Major Criteria to Consider for Crude Selection & Blending

- Total acid number (FAN)
- API gravity
- Compatibility
- Asphaltenes content
- Contaminants
- Carbon footprint
- Desirable cuts
- Paraffin content

Look-Alike of:
ANS
LLS
WTS

OPPORTUNITY CRUDES MANAGEMENT SEMINAR SERIES VIDEO #5: “WE ARE NOT COMPATIBLE” COPYRIGHT @HYDROCARBON PUBLISHING COMPANY
THE VALUE IN CRUDE
REFINERY RISK & INCOMPATIBILITY

• Regulations (Sulfur)
• Catalyst Poisoning (Sulfur)
• FCC units catalyst deactivation (Nitrogen)
• Salt Formation (Nitrogen) - heat exchanger fouling or filter blockage

• Compatibility?
• Product Value?
• Up-time?
• Process Control?
• Cost of Processing?
CNS SIMDIS

SOLUTION DESCRIPTION

CNS SIMDIS

- Delivers Quantitative data on S/N vs boiling point in 30 mins
- Can be compared to traditional Crude Assay (for BP, S & N)
- Provides Better understanding on Crude Oil input quality, modeling & Blending

- Lowers down-times
- Decreases Cost of Labor
- Optimizes product value within specification

→ Improve Refinery Profit
CNS SIMDIS

- Proven SIMDIS & SeNse Chemiluminescence Detector Technology
- Post-column Vent, Microfluidics splitter
- DHA FE optional for <C9 information
- Low Temp (middle Distillates) or High Temp Solution (Crude)
- Complies to D7807, Analog to other key SIMDIS methods
BENEFITS

• Fast decision making: <30 minutes analysis time
• Less sample required: <10 ml
• Accuracy / Precision <10% RSD
• High Resolution Sulfur and Nitrogen data by boiling point or carbon number easily accessible
• Typical SIMDIS Reporting w. export functions.
• Minimal technician/chemist training required
• Automation.
• Safety! No CS2 is used.
<table>
<thead>
<tr>
<th>CNS SIMDIS Application Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Method</td>
</tr>
<tr>
<td>Carbon Number Range</td>
</tr>
<tr>
<td>Sample Range</td>
</tr>
<tr>
<td>Sample Boiling Range</td>
</tr>
<tr>
<td>Sample Injection</td>
</tr>
</tbody>
</table>
EXAMPLE DATA

TYPICAL RESULTS
CALIBRATION / LINEARITY

CALIBRATION Graph for Sulphur

CALIBRATION Graph for Nitrogen
Repeatability

<table>
<thead>
<tr>
<th>Crude Oil 1</th>
<th>S</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1399</td>
<td>797</td>
</tr>
<tr>
<td>2</td>
<td>1373</td>
<td>855</td>
</tr>
<tr>
<td>3</td>
<td>1426</td>
<td>885</td>
</tr>
<tr>
<td>4</td>
<td>1424</td>
<td>901</td>
</tr>
<tr>
<td>5</td>
<td>1428</td>
<td>874</td>
</tr>
<tr>
<td>Average</td>
<td>1410</td>
<td>862.4</td>
</tr>
<tr>
<td>SD</td>
<td>23.8</td>
<td>40.2</td>
</tr>
<tr>
<td>RSD</td>
<td>1.7%</td>
<td>4.7%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Crude Oil 2</th>
<th>S</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6861</td>
<td>1435</td>
</tr>
<tr>
<td>2</td>
<td>6780</td>
<td>1591</td>
</tr>
<tr>
<td>3</td>
<td>6701</td>
<td>1416</td>
</tr>
<tr>
<td>4</td>
<td>6773</td>
<td>1427</td>
</tr>
<tr>
<td>5</td>
<td>6756</td>
<td>1494</td>
</tr>
<tr>
<td>Average</td>
<td>6774.2</td>
<td>1472.6</td>
</tr>
<tr>
<td>SD</td>
<td>57.6</td>
<td>72.8</td>
</tr>
<tr>
<td>RSD</td>
<td>0.8%</td>
<td>4.9%</td>
</tr>
</tbody>
</table>

Reproducibility

<table>
<thead>
<tr>
<th>Crude Oil 1</th>
<th>S</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1427</td>
<td>847</td>
</tr>
<tr>
<td>2</td>
<td>1421</td>
<td>822</td>
</tr>
<tr>
<td>3</td>
<td>1493</td>
<td>831</td>
</tr>
<tr>
<td>4</td>
<td>1470</td>
<td>788</td>
</tr>
<tr>
<td>5</td>
<td>1526</td>
<td>861</td>
</tr>
<tr>
<td>Average</td>
<td>1467</td>
<td>830</td>
</tr>
<tr>
<td>SD</td>
<td>44</td>
<td>28</td>
</tr>
<tr>
<td>RSD</td>
<td>3.0%</td>
<td>3.3%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Crude Oil 2</th>
<th>S</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7070</td>
<td>1548</td>
</tr>
<tr>
<td>2</td>
<td>7134</td>
<td>1583</td>
</tr>
<tr>
<td>3</td>
<td>7292</td>
<td>1493</td>
</tr>
<tr>
<td>4</td>
<td>7332</td>
<td>1544</td>
</tr>
<tr>
<td>5</td>
<td>7352</td>
<td>1494</td>
</tr>
<tr>
<td>Average</td>
<td>7236</td>
<td>1532</td>
</tr>
<tr>
<td>SD</td>
<td>126</td>
<td>39</td>
</tr>
<tr>
<td>RSD</td>
<td>1.7%</td>
<td>2.5%</td>
</tr>
</tbody>
</table>
CNS VS COMBUSTION UVF

Correlation CNS vs Combustion UVF

- **% Sulphur - 15 crudes (Subset of 400)**
 - $R^2 = 0.9987$
- **% Nitrogen - 15 crudes (Subset of 400)**
 - $R^2 = 0.9815$

CNS SIMDIS Compares very well with Combustion UVF.
CRUDE COMPOSITION

Distribution Of Sulphur by BP Fraction by CNS SIMDIS/XRF
10 different Crudes

- Blue: Naphta (<165°C)
- Orange: Kero 165-270°C
- Gray: Diesel (270-370°C)
- Yellow: VGO (370-565°C)
- Light Blue: Vac Residue

www.paclp.com
CNS SIMDIS VALUE

Efficient
Reliable
Actionable Information
Proven Technology

Turnkey
Easy to use
Fast / Automated

- Optimize Crude Input Understanding/Blending
- Fast, Low cost, Easy Crude Assay Alternative
- Improve Refinery Profit
- Final Product Quality Control