

AUTOMATIC FREEZING POINT TEST FOR AVGAS

Dr. Larry Spino PAC LP

www.paclp.com

- Measure Freezing Point of Aviation Gasoline
- Preliminary data showing effects of aromatics and contaminates on freezing behavior

- Affect of Avgas contaminated with jet fuel
 - Customer issue
- Examined influence of aromatics on freezing point of Avgas

- Finding freezing point of Avgas is not mandatory
- Only note if no crystals are detected below -58°C
- ** Avgas can have freezing points lower than -100°C
- ** Some Avgas have freezing points at -70°C and still be acceptable Avgas

Model OptiFZP (ASTM D7153) used for tests

- Two detector system
- Nomenclature of the OptiFZP
 - Main Detector
 - Cd = temperature at which first crystals are detected
 - Freezing point temperature which hydrocarbon crystals fully disappear
 - Secondary (Opacity) Detector
 - Co = temperature at which larger crystals are detected by the 2nd detector
 - Do = temperature at which disappearance is detected by the 2nd detector

Analytical Technology

Company Confidential - For Internal Use Only

www.paclp.com

TYPICAL JET FUEL

TYPICAL AVGAS

TYPICAL AVGAS

Results					Ŷ		17:10 28 Apr 2017
	Test Parameters		Result				
▲ 108 129	Operator:	SU	Crystal.	not de	tecte	d till:	
	Sample ID:	AvGas-170404-03	-120.0 °c				
	Product:	ASTM D7153	Cd:	٥()		
	Performed:	05 Apr 2017 11:03	Co:	°()		•
	Ending:	Stop temperature	Do:	°()		•
	Cycle/Res:	1 / 1	Note:				
	Warning:	0x0000000					
	r0000108						
	Exit	Print Ch	nart 🗹	Validate			

Jet Fuel in Avgas (customer data)

"Base Av Gas"	"Impurity"	FZP - D7153
Av Gas (%vol)	Jet Fuel (%vol)	Result (°C)
100	0	-89.3
95.8	4.2	-84.3
91.6	8.4	-78.5
83.3	16.7	-71.2
66.6	33.4	-64.9
50	50	-60.0
25	75	-54.9
0	100	-50.3

FZP (ASTM_D7153) of Avgas depending of impurity (JetFuel)

Slope of 1.2 °C/% of impurity

Conclusion

- Customer can easily determine if his Avgas has 1% or higher jet fuel
- **Must compare Avgas before transferring to storage tank with the sample after storage

- Examined effect of large amount of aromatics
 - Benzene

10% BENZENE IN AVGAS

Findings

- Very large difference in freezing/melting of high aromatics in Avgas (freezing -80°C/ melting between -60°C and -30°C
- 2. Crystal (solid) density significantly higher than density of the liquid
- 3. Stirring in manual test not enough to agitate crystals

**Avgas starts freezing at -80°C with stirring and -100°C without stirring

- As expected, blends of Av Gas/Jet, Av Gas/diesel, Av Gas/high aromatics, affect freezing point
- Super cooled solutions of heterogeneous blends of high amounts of aromatics (xylene & benzene) produce crystals which have broad melting temperature behavior
- Current manual method, according to procedure D910, not capable of detecting freezing point of AV Gas with heavy aromatic contamination

• Questions?

