

The Advantage of Real Atmospheric Distillation using D7345 Test Method

Presented by Jonathan Cole, PAC

Distillation - a Critical Measurement

- Crude feedstock has a complex mixture of hydrocarbons
 - Separate the hydrocarbons through evaporation and condensation
 - Boiling range gives information on composition, properties of fuels

Distillation Method Comparison

ASTM D86	 Historical test method Determines the boiling range of the product by performing a simple batch distillation
ASTM D7345	 Alternative distillation method Uses MicroDistilation Provides fast results using small sample volume

ASTM D7345 - Microdistillation

- Real online distillation analysis
- Demonstrates temperature limitations at 400 °C, 752 °F

Case Studies

Case Study #1: Analyzer Performance PAC

Customer Challenges:

- Large capacity (350,000 bpd)
- Diverse output including:
 - diesel fuel
 - gasoline
 - LPG
 - naphtha
 - kerosene

MicroDist in Distillation Tower

Case Study #1: Analyzer Performance Definition

Microdistillation Solution

- 720 hr Evaluated based on:
 - Operability
 - Robustness
 - Response time
 - Precision
 - Accuracy
 - Ease of Maintenance
- Tested through the distillation range at 5%, 10%, 85%, & 90%

Case Study #1: Analyzer Performance

MicroDist Results

- Repeatability that is superior to ASTM D86 lab standard
- Solutions for several process
 applications
- Fast analysis cycle of 7 10
 minutes
- User friendly equipment
 interface
- Easy installation

"This **analyzer surpassed** by far our *expectations*....confronting with other technologies that have been used for 14 years, as online chromatography and infrared techniques... we **recommend** the analyzer *implementation* in direct distillation plants for monitoring and controlling of tower fraction cuts, in cracking plants, hydrotreating unit ... all this **because PAC's MicroDist is a real** distillation." ~ Plant Supervisor

Case Study #2: Diesel Optimization

Microdistillation Solution

- Fast analysis that is ideal for on-line control
- Optimizes cutpoint while permitting diesel specs to be met

Case Study #2: Cutpoint Optimization

Distillation Cut Points

Temperature, Deg F

Liquid volume percent of crude

Case Study #2: Cutpoint Optimization

MicroDist Results

- Tight correlation to ASTM D86 lab standard
- Determine accurate diesel cutpoints to maximize margin
- Complete distillation in under 10 minutes

With microdistillation, optimizing the diesel cut point can result in an <u>additional 0.5% to 1% in</u> production for every <u>1°C</u> closer to setpoint

Case Study #3: Gasoline Blender Application

Customer Challenges:

- Blending as economically as possible to
 - Reduce the octane usage
 - Meet required specification.

Case Study #3: Gasoline Blender

Excellent Correlation to Lab Results

- 93% regression analysis of the lab and process values at the 50% recovery point
- Allows for good process control for the gasoline production

Case Study #3: Atmospheric Distillation & Boiling Point Analysis in a Gasoline Blender

Achieved a Return on Investment in 36 days with the MicroDist by PAC

Economics of Utilizing a Boiling Point Analyzer in a Gasoline Blender

little over a month.

MicroDist by PAC Technology & Features

ASTM D7345 - Microdistillation

Determines the complete distillation curve using data from a single phase transition – evaporation.

- Based on thermodynamic dependencies
- Measures liquid and vapor variations while monitoring the pressure inside a MicroDistilation flask
- Measured vapor pressure characterizes the product flow rate through the hydrodynamic process in the capillary

MicroDist Technology

21

Analytical Principle: Changes in Temperature and Pressure During an Average 7-minute Distillation Time for Jet Fuel

Benefits and Applications

- Correlation to primary test
 method D86
- Robust technology
- Fast response time

- Key Applications include:
 - Cutpoint Optimization
 - Cetane Index
 - Driveability Index
 - Density

Questions?