

GAS XLNC[™]SOFTWARE

Easy to Use Software Designed to Simplify and Standardize Gas Analysis

- Includes Extensive Range of Report Options and Calculations
- Users can add and customize Calculations to their Specific Needs
- High Level of Automation contributes to Optimized Analysis Accuracy and Precision
- () In Compliance with Various Refinery and Natural Gas Standard Test Methods

WWW.PACLP.COM

GAS XLNC

WORKFLOW

					latera antera lateratoria l'angues fallenter les de anter a lateratoria les de ant	Nexad And Nata Front Report							
M Save 💽 Befresh			Los - K. M. Million				1. 33						
Sequence editor										/	-		
Instrument Status and Con Instrument Instrument 1	ntrol						ener - Components						
Instrument 1	ot					Compone D	ents () () () New Att	ribute Ei	St Amiliane	Delete Attrib	ute		
						CAS	Name	Color				Summation F (
Template Samples	Add Es	imated time: M	on 16:57			97-92-3	Cyclopentane	_	70.134	3322.19	3100.03		0.9
And the second se						07-83-5	2 methylpentane		86.177	4190.62	3879.59		0.9
🕀 🖂 🗶 🕑 🛞 🛋 Up	💌 Down					6-14-0	3 methylpentane	_	86.177	4193.22	3882.19		0.5
Status Name	Method	Vial	Туре	Ref. Sample	California Comment Traksport	5-83-2	2,2-dmethylbutane	_	06.177	4100.03	3069.0	0.2627	0.5
ACGAS501	FASTRGA	1	Calibration		iver langeline	9-29-8	2,3-dmethylbutane		86.177	4188.6	3877.57	0.2739	0.9
Sample	FASTRGA	2	Sample		2 Include profits	10-54-3	nHexane	_	86.177	4198.24	3887.21	0.295	0.9
Sample	FASTRGA		Sample			01-76-4	2-methylhesiane	_	100.204	4050.32	4494.01	0	
Reference	FASTRGA		Sample			89-34-4	3 mothylhosano	_	100.204	4853.72	4498.19		
	invitien.					10-82-7	Cyclohexane		84.161	3956.02	3689.42		0.9
						42-82-5	n-Heptane		100.204	4857.18	4501.72	and the second se	0.0
						92.27-8	2 methylheptane	-	114.231	5509.49	5109.54		
						11-65-9	n-Octane		114.231	5516.01	5116.11		0.9
						24.18.5	n-Nonane	_	128.258	6175.82	5731.49		0.5

INSTRUMENT STATUS AND CONTROL

- Instrument status, creates sequences, and calculates end time for sequence
- Templates for samples/ calibrations, LIMS ID

CALIBRATION

- Setup multiple calibration sets
- Add sample uncertainties, track expiration dates

COMPONENTS FLEXIBILITY

• Add or edit physical properties for each component needed

ADVANCED OPTIONS

- Calculation for oxygen correction
- (ISO 6974-3)
- Bridge calculation across system channels
- Advanced Peak Identification for Individual peaks or peak Groups
- Unknowns handling
- Uncertainty Calculations
- Error propagation calculation (ISO 6974-2)

STANDARD TEST METHOD

- ISO 6974, ISO 6976, ISO 8973
- EN 15984 / DIN 5166
- EN 589
- ASTM D3588, ASTM D2598
- GPA 2172, GPA 2261, GPA 2286

Statut (Alian Ite	Wude _ Low	See 3	desty.								mple Name mo Calibrat	oon on 7990			Injection Date 10/29/200	17 11:31 92 /		tion Date 11/19/2012 3:25:211
										Applicatio			Method	Operator	Residence	Type	LIMS	D
				1						FAST RGA			Fast EGA	a fininistrator	admin	Calibrati	ion 1	
							A			Ideal Densil Molar Mass Real Densil	y at 15 °C		32.71	kg/m3 g/mol kg/m3				
				1	A					Real Wobbs Superior M		ic Value 15	40.29 1009.82	MJ in 3 kJ in el				
	~	*			- Alant	-	-	1		Component			Detector Col			m Maitte 3		Mane†4
								1		Carbonnon Methane	ende		TCD3 C, Au TCD3 C, Au		28-330 112-00	1.000	5,000	0.840
43 1	11	3 2	1 3	- 11	45 5	3.8		45 7 1		Unknown			FIDI A. From		182-01	0.006	0.006	0.018
									_	Nitrogen		15,2306			93E-04	34.060	35.057	31,956
IDO L An Spin Cat		at a second second	12							Orygen			TCD3 C, Au		25E-02	1.000	1,000	0.959
Chi Gau	Re Rely				 					a.Pentane			FID1 A, Free		65E-09	1.000	1,000	2.962
104384 L D	2.560		110 JONE 1							Isopentase		11.4069			728-06	1.000	1 000	2.162
- NIRA	1.00	5.00	110 0.000							1.3-Sutadio		10.0905	FIDI A, From		ME+04	3.000	3 000	4.854
24840 E	5 404 P 348	5.00	110 5494 1							Cis-3-Butes	e	9,1392	FID1 A, From	g 7.04	178-08	0.990	0.990	1.663
7713-00-4	10.365	5:00	8.55	1.1.1.1						Tuno-2-Dut	lene	\$.5643	FID1 A, From	4 2.00	99E-04	3.000	3 000	5.645
779444 D	84,240	2.20		272.25						Ico-Butyles		7,7696	FID1 A, From	e 6.57	97E-06	1.000	1 000	1.682
2444 0	45.258 67.674		100 1530 H							1-Butree		7.3173	FID1 A, Fere	e 134	47E-04	2.000	2,000	3.363
430.004	15100		110 0.00							a-Sutare			FIDI A. From		028-04	4,000	4,000	6.965
										Transa		5 9195	TCDLC Au	1.48	MF-04	4 100	4 100	9,691

ANALYSIS

Chromatogram View:

- Zoom/select
- Identify modes allow easy sample evaluation

REPORTING

- Print flexible reports
- Traceable, according to method or customized to need
- Export to file, LIMS

RELIABLE DATAMANAGEMENT

GASXLNC^m keeps track of all calibrations performed. This traceability allows for any result to be reproduced or recalculated with revised calibration data. Sample analysis results are maintained similarly.

Calibration can be performed in Single point, multilevel and bracketing mode, such as required in ISO6974-2. The calibration browser validates the calibration analysis and can be used to view analyzed calibration sets. The screen displays calibration plot and the calibration analyses results used, allowing calibration results to be approved or removed. Approved results are blocked from further change. The Trend Analysis function logs calibration/performance data over time, providing tools to the chemist for complying with any QC program.

SPECIFICATIONS

GAS CALULATIONS OVERVIEW	GА						
Standard methods and properties	HiSpeed RGA	Fast RGA	ISO 6974	GPA 2261	GPA 2286	Unit	Temperature
ISO 6976							
Compressibility (dry) Molar Mass Inferior/Superior Cal Value Mol Inferior/Superior Cal Value Mass Inferior/Superior Cal Value Vol (Ideal/Real) Relative Density dry (Ideal/Real) Density (Ideal/Real) Wobbe Index (Ideal/Real)	<i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i>	<i>I</i> <i>J</i> <i>J</i> <i>J</i> <i>J</i> <i>J</i>	<i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i>	Г	Г	g/mol KJ/mol MJ/kg MJ/m3 kg/m3 MJ/m3	15°C 15°C 15°C 15°C 15°C 15°C 15°C
EN 15984 / DIN 51666							
EN 15984 / DIN 51666 Carbon Content EN 15984 / DIN 51666 Heating value Mol EN 15984 / DIN 51666 Heating value Mass	ך ך ך	ך ך ך	ך ך ך	ך ך ך	5 5 5	g/100 g KJ/mol KJ/100g	
GPA 2172							
GPM Compressibility (dry/sat) Gross Heating Value (dry/sat gas, dry air) Real Gross Heating Value (dry/sat gas, dry air) Nett Heating Value (dry/sat gas, dry air) Real Nett Heating Value (dry/sat gas, dry air) Relative Density dry/sat gas (Ideal/Real)				[[[[[[]	<i>S</i> <i>S</i> <i>S</i> <i>S</i> <i>S</i>	Gal/1000 ft3 Btu/ft3 Btu/ft3 Btu/ft3 Btu/ft3	60 °F 60 °F 60 °F 60 °F 60 °F 60 °F 60 °F
ASTM D 2598							
Relative density liquid Vapor Pressure MON				Г Г Г	Г Г Г	kg/m3 psi	60 °F 100 °F
EN 589							
MON Vapor Pressure -10°/-5°/0°/10°/20°/40° Density acc ISO 8973	ך ך ך	ך ך ך	ן ר ר	ן ר ר	5 5 5	kPa kg/m3	15°C
ISO 8973Me							
Vapor Pressure 37.8°/40°/50°/70° Density	Г Г	Г Г	Г Г	Г Г	Г Г	kPa kg/m3	37.8°C 15°C
Miscellaneous							
Oxygen correction NGL Density CO2 emission factor Viscosity Schilling density Superior calorific value	「 「 「 「 「	[[] [] [] [] []	<i>s</i> <i>s</i> <i>s</i> <i>s</i> <i>s</i>	[[] [] [] [] []	<i>S</i> <i>S</i> <i>S</i> <i>S</i> <i>S</i>	kg/m3 kg/m3 BTU/kg	15°C 15°C 15°C

ABOUT PAC

PAC develops advanced instrumentation for lab and process applications based on strong **Analytical Expertise** that ensures **Optimal Performance** for our clients. Our analyzers help our clients meet complex industry challenges by providing a low cost of ownership, safe operation, high performance with fast, accurate, and actionable results, high uptime through reliable instrumentation, and compliance with standard methods.

HEADQUARTERS

PAC LP | 8824 Fallbrook Drive | Houston, Texas 77064 | USA T: +1 800.444.8378 | F: +1 281.580.0719 Our solutions are from industry-leading brands: AC Analytical Controls, Advanced Sensors, Alcor, Antek, Herzog, ISL, Cambridge Viscosity, PSPI, and PetroSpec. We are committed to delivering superior and local customer service worldwide with 16 office locations and a network of over 50 distributors. PAC operates as a unit of Roper Technologies, Inc., a diversified technology company and a constituent of S&P 500, Fortune 1000, and Russell 1000 indices.

Contact us for more details.

Visit our website to find the PAC representative closest to you.